Math 217 Fall 2025 Quiz 9 – Solutions

Dr. Samir Donmazov

- 1. Complete* the partial sentences below into precise definitions for, or precise mathematical characterizations of, the italicized term:
 - (a) Suppose V and W are vector spaces. A linear transformation $T: V \to W$ is ...

Solution: A function $T: V \to W$ satisfying

$$T(u+v) = T(u) + T(v)$$
 and $T(\alpha v) = \alpha T(v)$

for all $u, v \in V$ and all scalars α in the underlying field (here \mathbb{R}). Equivalently, $T(\alpha u + \beta v) = \alpha T(u) + \beta T(v)$ for all u, v and all scalars α, β .

- (b) Suppose V and W are vector spaces and $T: V \to W$ is a linear transformation.
 - (i) The image of T is . . .

Solution: The subset of the target consisting of all outputs of T:

$$\operatorname{Im}(T) = \{ w \in W \mid \exists v \in V \text{ with } w = T(v) \}.$$

It is a subspace of W.

(ii) The kernel of T is ...

Solution: The set of all vectors in the source that T sends to the zero vector of W:

$$\ker(T) = \{ v \in V \mid T(v) = 0_W \}.$$

It is a subspace of V.

(a) Suppose U is a vector space and $u_1, \ldots, u_n \in U$. The *span* of (u_1, \ldots, u_n) is \ldots

Solution: The set of all finite linear combinations of these vectors:

$$\operatorname{span}\{u_1,\ldots,u_n\} = \Big\{ \sum_{i=1}^n \alpha_i u_i \mid \alpha_1,\ldots,\alpha_n \in \mathbb{R} \Big\}.$$

It is the smallest subspace of U containing all u_i .

2. Suppose $n \in \mathbb{Z}_{>0}$. Recall that \mathcal{P}_n denotes the polynomials of degree $\leq n$. Show

[VS-5:] For all
$$a \in \mathbb{R}$$
 and $p(x), q(x) \in \mathcal{P}_n$, $a(p(x) + q(x)) = a p(x) + a q(x)$.

^{*}For full credit, please write out fully what you mean instead of using shorthand phrases.

Solution: Write

$$p(x) = \sum_{i=0}^{n} p_i x^i, \qquad q(x) = \sum_{i=0}^{n} q_i x^i.$$

Then

$$p(x) + q(x) = \sum_{i=0}^{n} (p_i + q_i)x^i.$$

By the definition of scalar multiplication in \mathcal{P}_n and distributivity in \mathbb{R} ,

$$a(p(x)+q(x)) = \sum_{i=0}^{n} a(p_i+q_i)x^i = \sum_{i=0}^{n} (ap_i+aq_i)x^i = \sum_{i=0}^{n} (ap_i)x^i + \sum_{i=0}^{n} (aq_i)x^i = (ap)(x) + (aq)(x)$$

Hence a(p+q) = ap + aq in \mathcal{P}_n .

- 3. True or False. If you answer true, then state TRUE. If you answer false, then state FALSE. Justify your answer with either a short proof or an explicit counterexample.
 - (a) Suppose X and Y are sets. The function $f: X \to Y$ is surjective if and only if its image is equal to its target.

Solution: True. By definition, f is surjective (onto) precisely when for every $y \in Y$ there exists $x \in X$ with f(x) = y, i.e., when $\text{Im}(f) = \{f(x) \mid x \in X\} = Y$.

(b) The trace map $\operatorname{tr}: \mathbb{R}^{2\times 2} \to \mathbb{R}$ sending $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ to a+d is linear and has trivial kernel (that is, its kernel is $\{\vec{0}\}$).

Solution: FALSE. Linearity holds since $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$ and $\operatorname{tr}(\alpha A)=\alpha\operatorname{tr}(A)$. However, the kernel is $\{A\in\mathbb{R}^{2\times 2}\mid\operatorname{tr}(A)=0\}$, which is not just $\{0\}$. For example,

$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \neq \mathbf{0}$$
 but $tr(A) = 1 + (-1) = 0$.

Thus the kernel is nontrivial (a 3-dimensional subspace), so the statement is false.